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Abstract
Many details are known about microcircuitry in visual cor-
tices. For example, neurons have supralinear activation
functions, they’re either excitatory (E) or inhibitory (I),
connection strengths fall off with distance, and the out-
put cells of an area are excitatory. This circuitry is im-
portant as it’s believed to support core functions such as
normalization and surround suppression. Yet, multi-area
models of the visual processing stream don’t usually in-
clude these details. Here, we introduce known-features
of recurrent processing into the architecture of a con-
volutional neural network and observe how connectivity
and activity change as a result. We find that certain E-I
differences found in data emerge in the models, though
the details depend on which architectural elements are
included. We also compare the representations learned
by these models to data, and perform analyses on the
learned weight structures to assess the nature of the neu-
ral interactions.
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Background
The visual processing stream is a hierarchy composed of brain
regions each with their own recurrent connectivity. This re-
current connectivity is believed to implement many important
functions such as normalization and surround suppression. In
previous work (Rubin, Van Hooser, & Miller, 2015), a model
was built based on the architecture of primary visual cortex
that can implement these functions. This model (the stabilized
supralinear network, or SSN) includes several features found
in the visual cortex of mammals, such as neurons with firing
rates that are a supralinear function of their input and connec-
tion strengths that depend on the similarity between preferred
stimuli. Of particular relevance to this study is the ”ring” ver-
sion of the SSN, which is a series of excitatory-inhibitory cell
pairs which all represent the same spatial location but have
different preferred features. This network implements ”cross-
feature” normalization: the response to two simultaneously
presented stimuli is less than the sum of the responses to
each stimulus presented individually.

Convolutional neural networks are currently some of the
best models available for capturing the transformations per-
formed by the visual processing stream (Yamins et al., 2014).

Yet these models do not usually include any recurrent pro-
cessing, and lack many of the features found in biology.

Here we successively add different biological details of re-
current processing to a standard convolutional architecture,
and measure the extent to which these additions make the
model a better match to data, evaluated along several differ-
ent axes of variation.

Methods

Network Architectures

The base architecture was inspired by AlexNet and contained
5 convolutional layers and 3-fully connected layers. Recurrent
connections were included at the fifth convolutional layer. The
recurrence was run for 11 time steps, with the last time step
used to calculate classification performance.

The recurrence was convolutional with filter size 3x3 (for
reference, feature maps at layer 5 are 8x8). In the ”notEI”
network there were no constraints on recurrent weights. In
EI networks, half of the channels were excitatory and half in-
hibitory. The recurrent filters applied to the E channels were
restricted to contain only non-negative values and those of I
channels could contain only non-positive values. This was en-
forced by applying an absolute value function to the weight
matrices (followed by multiplication by −1 for inhibitory chan-
nels).

Each cell in the recurrent layers had a response (r) that
evolved according to this equation, adapted from (Rubin et
al., 2015):

τi
dri

dt
=−ri +([Ii]+)

n (1)

where Ii is the sum of the feedforward input coming to neuron i
from the layer below, which is constrained to be non-negative,
and its recurrent input. In supralinear networks, n = 1.8. In
”linear” networks, n= 1 (note that the function is still nonlinear,
as it is rectified). In all models, dt = 2.0ms and τi was 20ms
for E cells and 10 ms for I cells.

In a standard EI network, the depth of the recurrent con-
volutional filters is equal to the number of channels (256). In
other words, the recurrent connectivity is all-to-all in feature
space. We also studied networks with distance-dependent
connections in feature space. In this case, we took the chan-
nels to be arranged on a ring of 128 nodes, with an E channel
and an I channel at each node (or simply two channels in the
’notEI’ networks). The weights from a given channel to chan-
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nels more than x nodes away (here x = 10 or 20) were set to
0.

In some networks, only the excitatory cells served as output
to the next layer of the network. In most, all did.

In most but not all networks, the contrast of the input images
(the range of positive/negative values about the mean of each
color channel) was scaled by a random value between .5 and
5. This was done to encourage the network to learn to do
normalization.

For the ”SSN” model, the recurrent weights were not
learned, but held constant at the values used in (Rubin et al.,
2015). Specifically, the recurrent connections were such that
a ring network was placed at each spatial location (recurrent
spatial filters in this network were 1x1) to implement cross-
feature normalization. Only excitatory neurons served as out-
put in this model, and the image contrasts were varied during
training as above.

Networks were trained via stochastic gradient descent on
the ImageNet dataset.

Analysis Methods
Comparing to Data Features We found in the literature
several measures of excitatory and inhibitory activity, along
with other findings relating to recurrent processing, that we
wished to compare to our models. We tested whether each
of our models is a qualitative match to each of these findings.
The statistical significance of these findings were tested via
a 2-sample t-test. For analyses of the ”notEI” network, one
feature map at each node was treated as excitatory and the
other as inhibitory, despite these distinctions not existing in
this network.

Comparing Representations We use the pre-established
method of representational similarity analysis (RSA,
kriegeskorte2008representational) to compare model
representations to each other and to V4 data.

Non-normality and E-I Interaction We used several meth-
ods to characterize the connectivity patterns of the excitatory
and inhibitory recurrent weights. First, we summed over the
spatial dimensions of the recurrent weight tensor to obtain a
C×C (where C is the number of feature maps) block matrix

W =

(
WEE WEI
WIE WII

)
, (2)

where WXY contains connections from neuron type Y to X . We
studied their interactions via the Schur decomposition, which
allows us to write

W =UΛU−1, (3)

where U is a unitary transformation matrix and Λ is an upper
triangular matrix whose diagonal elements are the eigenval-
ues of W . Significant strength in the interaction terms WEI and
WIE renders W strongly non-normal (Murphy & Miller, 2009),
i.e. its eigenvectors deviate strongly from orthogonality, and
this produces the effective feedforward weights between ac-
tivity patterns in the upper triangular part of Λ. Because the

summed absolute square of the matrix entries, as well as the
eigenvalues, are preserved under unitary transformations, the
summed absolute square of the feedforward weights of Λ, rel-
ative to the summed absolute square of all the weights, is a
unitary invariant representing the relative strength of the feed-
forward weights, and is one scalar measure of the degree of
non-normality of W . This is computed as

ρ =
||W ||2F −∑i |λi|2

||W ||2F
, (4)

where || · ||F denotes the Frobenius norm and {λi}Ci=1 are the
eigenvalues of W (Trefethen & Embree, 2005). If W is normal,
then Λ is exactly diagonal and ρ = 0.

The second measure we computed is derived from the
Schur vectors stored in the unitary transformation matrix U .
Due to the block structure of W , the first C/2 entries of each
Schur vector correspond to excitatory weights, while the sec-
ond C/2 entries correspond to inhibitory weights. A weight
matrix with evenly mixed interactions both within and between
cell types would therefore be expected to have relatively equal
weightings in each half of its Schur vectors. This balance can
be quantified by the Schur ratio rS:

rS =
1
C

C

∑
j=1

min

{
∑

C/2
i=1 |Ui j|2

∑
C
k=C/2+1 |Uk j|2

,
∑

C
k=C/2+1 |Uk j|2

∑
C/2
i=1 |Ui j|2

}
, (5)

with higher values of rS associated with a greater degree of
E-I balance.

Results
Once trained, the networks all displayed similar top-1 perfor-
mance accuracy (ranging from 46.5-47.1%), with the excep-
tion of the SSN network, which only reached 39.5%. Though
enhancing performance is not our immediate goal, perfor-
mance is correlated with ability of a model to match data rep-
resentations (Yamins et al., 2014).

Testing the Model Recurrence for Data Features
Inspired by findings in the literature, we asked whether certain
features regarding the activity of the neurons were present in
our recurrent circuit. These included: Is mean I firing higher
than mean E firing (”FR: I > E”)? Are I↔I correlations higher
than E↔E correlations (”Cor: II > EE”)? Do correlations de-
crease over time during the response (”Cor: Ear > Late”,
(Maor, Shalev, & Mizrahi, 2016))? Are the outputs of a cell
more strongly tuned than the inputs (”Tune: O > I”, (Liu, Wu,
Arbuckle, Tao, & Zhang, 2007))? Are E cells more strongly
tuned than I cells? (”Tune: E > I”, (Kerlin, Andermann,
Berezovskii, & Reid, 2010)) Do the cells perform normaliza-
tion (measured as the percent of cells performing sublinear
summation, ”Sublin: %”)? Is the strength of E projections to
the spatial surround stronger than I (”Sur: E > I”, (Hirsch &
Gilbert, 1991))? Whether or not each of our models matched
the data on these measures can be found in Table 1. The
measures of correlations were particularly helpful in discrimi-
nating between models. The networks which aligned with the
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Table 1: Model Comparisons to Data Features. Model Key: l = linear, nl = supralinear, VC = contrast varied, H10 or H20 =
distance-dependent connections restricted to distance 10 or 20, EO = output is excitatory cells. Data features described in
Results. If the comparison was statistically significant (p < .05) and matched the data, the p-value is listed, otherwise an ’N’ is
present.

Model FR: I > E Cor: II > EE Cor: Ear > Late Tune: O > I Tune: E > I Sublin: % Sur: E > I
l notEI VC N N 2.7e−9 2.3e−104 N 19.3 N
l VC 1.4e−61 N 1.8e−5 3.4e−104 .0090 46.3 N
lH10 VC N .027 N .026 8.1e−6 26.4 .0036
lH20 2.7e−12 N N 2.6e−56 1.3e−10 20.7 .022
lH20 VC 4.6e−29 .0015 N 1.1e−58 2.6e−4 19.0 .024
lH20EO VC 0 2.1e−55 1.1e−47 3.5e−72 8.1e−29 58.9 N
nl VC 6.3e−133 N .011 7.5e−167 1.3e−5 79.4 N
nlH10 VC 0 N N 6.6e−151 2.9e−83 18.0 N
nlH20 0 N .044 8.4e−177 4.8e−32 23.4 N
nlH20 VC 0 N 2.6e−4 4.6e−171 4.2e−25 37.3 N
nlH20EO VC 4.3e−263 1.4e−13 1.9e−4 1.4e−146 6.2e−07 50.5 N
SSN 0 0 3.8e−308 2.0e−42 N 82.0 -

most features of biological data were the two models wherein
only the excitatory cells formed the output cells of the layer.
The network with the SSN explicitly included also performs
well, and has the highest percent of cells displaying sublinear
summation.

Figure 1: RSA similarity between models (correlation of
RDMs) at the final time point. Model name key in Table 1

Comparing Representations
In addition to the data features discussed above, we also ex-
plored how architectural features impact the representations
these networks learn. We used RSA to compare represen-
tations elicited in response to 256 ImageNet images (Figure
1). Two of the most biologically-realistic models (nlH20EO VC

and SSN) have representations that are very different from
the other models (and also each other). extent, as to a lesser
extent did the linear excitatory-output network (lH20EO VC).
We also compared representations in the model to cortical
data. We used RSA to compare model responses to the re-
sponse of a population of V4 neurons to the same 64 object
images (Yamins et al., 2014). Because the recurrence in our
model introduces temporal dynamics, we are able to compare
point-for-point the model, which had 11 time steps, to the data
binned into 11 20ms bins. (Figure 2). The SSN model has
one of the worst matches to the data, which may be a result of
its low performance, rather than any aspect of the SSN per se.
It will also need to be explored if a different mapping between
the temporal dynamics of the model and that of the data would
result in better matches. Interestingly, the linear models, which
are less biologically accurate, have some of the best fits to the
data.

Analyzing Connectivity

Results for the weight matrix non-normality and Schur ratios
were plotted against each other in Figure 3. There is a rela-
tively strong correlation between the two measures and sev-
eral trends are evident.

First, supralinear activation functions on average promote
both stronger E→I and I→E interactivity and more evenly
mixed interactions both within and between cell types. Sec-
ond, restricting the output cells to only be excitatory has the
strongest effect in increasing both the Schur ratio and the
non-normality. Third, training with variable image contrasts
appears to be a necessary but insufficient criterion to max-
imize these measures. Table 1 demonstrates that training
with this transformation in the supralinear network does in-
deed increase the model’s ability to perform sublinear sum-
mation. This suggests that connectivity between E and I cells
in biological networks may be a function of the characteris-
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Figure 2: RSA between models and V4 data. Time point for
time point comparison for the best performing model shown on
the left; similarity averaged over time for all models on right.

tics of sensory inputs as well. Surprisingly, the SSN (the most
biologically-plausible model) scores in the bottom half for both
the Schur ratio and the non-normality. Conversely, the notEI
model (the least biologically plausible) has one of the highest
non-normality values.

Conclusions
Here we show that it is possible to incorporate more
biologically-realistic details, in the form of recurrent connec-
tions, into a standard convolutional neural network architec-
ture. This has the benefit of merging traditional single area
computational models, which can replicate details of neu-
ral circuitry and activity statistics, with hierarchical multi-area
models that can perform visual tasks and predict neural activ-
ity. In doing so, we show that certain architectural features—
such as only allowing excitatory cells to be output cells—help
replicate findings from the data and lead to different types of
image representations. The architectural features that provide
these benefits do not, however, necessarily make the image
representations in the model more similar to that of V4 data.
Reconciling these differences will be important.
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